Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ecotoxicol Environ Saf ; 272: 116028, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38310824

RESUMEN

Extensive application of lead (Pb) brought about environmental pollution and toxic reactions of organisms. Selenium (Se) has the effect of antagonizing Pb poisoning in humans and animals. However, it is still unclear how Pb causes brainstem toxicity. In the present study, we wanted to investigate whether Se can alleviate Pb toxicity in chicken brainstems by reducing apoptosis. One hundred and eighty chickens were randomly divided into four groups, namely the control group, the Se group, the Pb group, and the Se/Pb group. Morphological examination, ultrastructural observation, relative mRNA expressions of genes on heat shock proteins (HSPs); selenoproteins; inflammatory cytokines; and apoptosis-related factors were investigated. The results showed that Pb exposure led to tissue damage and apoptosis in chicken brainstems. Furthermore, an atypical expression of HSPs (HSP27, HSP40, HSP60, HSP70, and HSP90); selenoprotein family glutathione peroxidase (GPx) 1, GPx2, GPx3, and GPx4), thioredoxin reductases (Txnrd) (Txnrd1, Txnrd2, and Txnrd3), dio selenoprotein famliy (diodothyronine deiodinases (Dio)1, Dio2, and Dio3), as well as other selenoproteins (selenoprotein (Sel)T, SelK, SelS, SelH, SelM, SelU, SelI, SelO, Selpb, selenoprotein n1 (Sepn1), Sepp1, Sepx1, Sepw1, 15-kDa selenoprotein (Sep15), and selenophosphate synthetases 2 (SPS2)); inflammatory cytokines (Interleukin 2 (IL-2), IL-4, IL-6, IL-12ß, IL-17, and Interferon-γ (IFN-γ)); and apoptosis-related genes (B-cell lymphoma-2 (Bcl-2), tumor protein 53 (p53), Bcl-2 Associated X (Bax), Cytochrome c (Cyt c), and Caspase-3) were identified. An inflammatory reaction and apoptosis were induced in chicken brainstems after exposure to Pb. Se alleviated the abnormal expression of HSPs, selenoproteins, inflammatory cytokines, and apoptosis in brainstem tissues of chickens treated with Pb. The results indicated that HSPs, selenoproteins, inflammatory, and apoptosis were involved in Se-resisted Pb poisoning. Overall, Se had resistance effect against Pb poisoning, and can be act as an antidote for Pb poisoning in animals.


Asunto(s)
Selenio , Humanos , Animales , Selenio/farmacología , Pollos/metabolismo , Citocinas/genética , Plomo , Selenoproteínas/genética , Selenoproteínas/metabolismo , Proteínas de Choque Térmico/genética , Proteínas Proto-Oncogénicas c-bcl-2
2.
Ecotoxicol Environ Saf ; 258: 114983, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37148751

RESUMEN

Water pollution caused by widely used agricultural pesticide chlorpyrifos (CPF) has aroused extensive public concern. While previous studies have reported on toxic effect of CPF on aquatic animal, little is known about its effect on common carp (Cyprinus carpio L.) livers. In this experiment, we exposed common carp to CPF (11.6 µg/L) for 15, 30, and 45 days to establish a poisoning model. Histological observation, biochemical assay, quantitative real-time polymerase chain reaction (qRT-PCR), Western blot, and integrated biomarker response (IBR) were applied to assess the hepatotoxicity of CPF in common carp. Our results displayed that CPF exposure damaged histostructural integrity and induced liver injury in common carp. Furthermore, we found that CPF-induced liver injury may be associated with mitochondrial dysfunction and autophagy, as evidenced by swollen mitochondria, broken mitochondrial ridges, and increased the number of autophagosomes. Moreover, CPF exposure decreased the activities of ATPase (Na+/K+-ATPase, Ca2+-ATPase, Mg2+-ATPase, and Ca2+Mg2+-ATPase), altered glucose metabolism-related genes (GCK, PCK2, PHKB, GYS2, PGM1, and DLAT), and activated energy-sensing AMPK, indicating that CPF caused energy metabolism disorder. The activation of AMPK further induced mitophagy via AMPK/Drp1 pathway, and induced autophagy via AMPK/mTOR pathway. Additionally, we found that CPF induced oxidative stress (abnormal levels of SOD, GSH, MDA, and H2O2) in common carp livers, which further contributed to the induction of mitophagy and autophagy. Subsequently, we confirmed a time-dependent hepatotoxicity caused by CPF in common carp via IBR assessment. Our findings presented a new insight into molecular mechanism of CPF induced-hepatotoxicity in common carp, and provided a theoretical basis for evaluating CPF toxicity to aquatic organisms.


Asunto(s)
Carpas , Enfermedad Hepática Crónica Inducida por Sustancias y Drogas , Cloropirifos , Insecticidas , Animales , Cloropirifos/toxicidad , Insecticidas/toxicidad , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Mitofagia , Carpas/metabolismo , Peróxido de Hidrógeno/farmacología , Autofagia , Estrés Oxidativo , Metabolismo Energético , Adenosina Trifosfatasas/metabolismo
3.
Aquat Toxicol ; 261: 106570, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37202229

RESUMEN

Toxic effect of heavy metal cadmium (Cd) on fish kidneys had been reported. Mitochondrion is an important organelle for maintaining kidney function, while its role in Cd-induced kidney injury in common carp remained unclarified. In this experiment, we established a poisoning model of common carp with Cd exposure (0.26 mg/L) for 15, 30, and 45 days. Serum biochemistry determination, histological observation, TUNEL assay, qRT-PCR, Western blot, and integrated biomarker response (IBR) were applied to assess the nephrotoxicity of Cd to common carp. Our results displayed that Cd exposure increased the levels of serum biochemical indexes (UREA, CRE, and UA), indicating kidney injury. We further revealed via histological observation that Cd damaged structural integrity of kidneys, as evidenced by renal glomerulus and renal tubular injury, hallmark phenotypes of apoptosis, and mitochondrial damage, suggesting that mitochondria damage and apoptosis were involved in Cd-induced kidney injury. Moreover, Cd exposure decreased ATPase (Na+/K+-ATPase, Ca2+-ATPase, Mg2+-ATPase, and Ca2+Mg2+-ATPase) activities as well as PGC-1a and Mfn2 levels, while increased Drp1 and PINK1 levels as well as LC3-II/LC3-I ratio, which indicated that Cd-impaired renal energy metabolism was related to mitochondrial dysfunction. Additionally, we found that Cd induced oxidative stress (abnormal levels of SOD, CAT, GPX, MDA, and H2O2) in kidneys, which was involved in triggering mitochondrial dysfunction and further impairing mitochondrial energy metabolism. Moreover, the occurrence of mitochondria-dependent apoptosis was found after Cd-exposure in common carp kidneys, as indicated by enhanced levels of Bax, CytC, APAF1, Caspase-9, and Caspase-3, while declined level of Bcl-2. Subsequently, we confirmed a time-dependent nephrotoxicity of Cd to common carp via IBR assessment. In conclusion, Cd induced time-dependent nephrotoxicity in common carp via mitochondrial pathway. This mitochondria-oriented study shed light on underlying mechanisms of Cd-induced renal pathologies and provided a theoretical basis for evaluating Cd toxicity to aquatic organisms.


Asunto(s)
Carpas , Contaminantes Químicos del Agua , Animales , Cadmio/toxicidad , Cadmio/metabolismo , Peróxido de Hidrógeno/metabolismo , Contaminantes Químicos del Agua/toxicidad , Riñón , Estrés Oxidativo , Mitocondrias/metabolismo , Metabolismo Energético , Apoptosis
4.
Fish Shellfish Immunol ; 135: 108682, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36924910

RESUMEN

4-tert-butylphenol (4-tBP) is a monomer widely used in the synthesis of industrial chemicals, and posed a high risk to aquatic animals. Our study focused on toxic phenotype and mechanism of detoxification in grass carp hepatocytes (L8824) after 4-tBP-treatment. In this experiment, L8824 displayed hallmark phenotypes of apoptosis and necroptosis after 4-tBP exposure, as evidenced by changes in cell morphology, increased rates of apoptosis and necrosis, the loss of MMP, the accumulation of ROS, and changes in associated factors (PARP1, JNK, Bid, Bcl-2, Bax, AIFM1, CytC, Caspase 9, APAF1, Caspase 3, TNF-α, TNFR1, RIPK1, RIPK3, and MLKL). Furthermore, we found that 4-tBP-induced apoptosis and necroptosis were reversed by pretreating with N-Acetylcysteine (a ROS scavenger) and 3-Aminobenzamide (a PARP1 inhibitor), indicating that 4-tBP induced the onset of mitochondrial apoptosis and necroptosis in L8824 via activating ROS-PARP1 axis. Nano-selenium (Nano-Se) is a novel form of Se with a noteworthy antioxidant capacity. Here, Nano-Se was found to have preventive, therapeutic, and resistance effects on 4-tBP-induced L8824 apoptosis and necroptosis. Nano-Se co-treatment with 4-tBP was an optimal way to alleviate 4-tBP-induced apoptosis and necroptosis. We demonstrated for the first time that Nano-Se protected L8824 against 4-tBP-induced mitochondrial apoptosis and necroptosis through ROS-PARP1 pathway. This study will provide a new theoretical basis for 4-tBP toxicology researches and aquatic animal protection.


Asunto(s)
Selenio , Animales , Especies Reactivas de Oxígeno/metabolismo , Selenio/metabolismo , Necroptosis , Apoptosis , Hepatocitos/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética
5.
ACS Omega ; 5(48): 30937-30945, 2020 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-33324801

RESUMEN

Branched-chain amino acids (BCAAs), particularly leucine, were reported to decrease obesity and relevant metabolic syndrome. However, whether valine has a similar effect has rarely been investigated. In the present study, mice were assigned into four treatments (n = 10): chow diet supplemented with water (CW) or valine (CV) and high-fat diet supplemented with water (HW) or valine (HV). Valine (3%, w/v) was supplied in the drinking water. The results showed that valine treatment markedly increased serum triglyceride and insulin levels of chow diet-fed mice. The body weight, serum triglyceride level, white adipose tissue weight, and glucose and insulin intolerance were significantly elevated by valine supplementation in high-fat diet-fed mice. Metabolomics and transcriptomics showed that several genes related to fat oxidation were downregulated, and arachidonic acid and linoleic acid metabolism were altered in the HV group compared to the HW group. In conclusion, valine supplementation did not suppress lipid deposition and metabolic disorders in mice, which provides a new understanding for BCAAs in the modulation of lipid metabolism.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...